鉅大LARGE | 點擊量:2098次 | 2018年07月26日
軟包鋰電池是如何設計的?
電池模組可以理解為鋰離子電芯經串并聯方式組合,加裝單體電池監控與管理裝置后形成的電芯與pack的中間產品。
其結構必須對電芯起到支撐、固定和保護作用,可以概括成3個大項:機械強度,電性能,熱性能和故障處理能力。是否能夠完好固定電芯位置并保護其不發生有損性能的形變,如何滿足載流性能要求,如何滿足對電芯溫度的控制,遇到嚴重異常時能否斷電,能否避免熱失控的傳播等等,都將是評判電池模組優劣的標準。高性能需求的電池模組,其熱管理的解決方案已經轉向液冷或相變材料。
軟包電池單體能量密度在常見三種鋰電池封裝形式中,最容易做高,但到了模組設計這一層,對產品整體安全性的考慮任務卻最重,可以說是把一部分電芯的活轉移給了模組結構。
模組的主要組成
軟包電池,各家設計選擇差距比較大,上圖中式一種較為典型的形式,其基本組成包括:模組控制請(常說的BMS從板),電池單體,導電連接件,塑料框架,冷板,冷卻管道,兩端的壓板以及一套將這些構件組合到一起的緊固件。其中兩端的壓板除了起到聚攏單體電芯,提供一定壓力的作用以外,往往還將模組在pack中的固定結構設計在上面。
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
結構設計
結構設計要求。結構可靠:抗震動抗疲勞;工藝可控:無過焊、虛焊,確保電芯100%無損傷;成本低廉:PACK產線自動化成本低,包括生產設備、生產損耗;易分拆:電池組易于維護、維修,低成本,電芯可梯次利用性好;做到必要的熱傳遞隔離,避免熱失控過快蔓延,也可以把這一步放到pack設計再考慮。
據了解,目前,行業內圓柱電芯的模組成組效率約為87%,系統成組效率約為65%;軟包電芯模組成組效率約為85%,系統成組效率約為60%;方形電芯的模組成組效率約為89%,系統成組效率約為70%。軟包電芯的單體能量密度比圓柱和方形有更高的提升空間,但對模組設計要求較高,安全性不易把控,這都是需要結構設計解決的問題。
一般模組優化途徑。提升空間利用率也是優化模組的一個重要途徑。動力電池PACK企業可以通過改進模組和熱管理系統設計,縮小電芯間距,從而提升電池箱體內空間的利用率。還有一種解決方案,即使用新材料。比如,動力電池系統內的匯流排(并聯電路中的總線,一般用銅板做成)由銅替換成鋁,模組固定件由鈑金材料替換為高強鋼和鋁,這樣也能減輕動力電池重量。
熱設計
軟包電芯的物理結構決定了其不易爆炸,一般只有外殼能承受的壓力足夠高,才有可能炸,而軟包電芯內部壓力一大,便會從鋁塑膜邊緣開始泄壓、漏液。同時軟包電芯也是幾種電芯結構中,散熱最好的。
軟包電池的著名代表,日產的Leaf,其模組結構為全密封式的,并未考慮散熱,即不散熱。而Leaf在市場上頻繁反饋的容量衰減過快,與此熱管理也不無關系。顯然隨著人們對于高性能電動車的追求,迫使軟包電芯也必須要有主動式的熱管理結構。
當前主流的冷卻方式,已經轉變為液冷以及相變材料冷卻。相變材料冷卻可以配合液冷一起使用,或者單獨在環境不太惡劣的條件下使用。另外還有一種當前國內仍然較多應用的工藝,灌膠。這里灌得是導熱系數遠大于空氣的導熱膠。由導熱膠將電信散發的熱量傳遞到模組殼體上,再進一步散發到環境中。這種方式,電芯再次單獨替換不太可能但也在一定程度上阻止了熱失控的傳播。
液冷,在前面說明模組組成的圖片中,冷板與液冷水管正是液冷系統的組成部件。模組由電芯層疊而成,而電芯間有間隔排布的液冷板,其保證每顆電芯都有一個大面接觸到液冷板。當然軟包電芯要將液冷技術做成熟也并非易事,其必須考慮液冷板的固定,密封性,絕緣性等等。
電氣設計
電氣設計,包含低壓和高壓兩個部分。
低壓設計,一般需要考慮幾個方面的功能。通過信號采集線束,將電池電壓、溫度信息采集到模組從控板或者安裝在模組上的所謂模組控制器上;模組控制器上一般設計均衡功能(主動均衡或者被動均衡或者二者并存);少量的繼電器通斷控制功能可以設計在從控板上,也可以在模組控制器上;通過CAN通訊連接模組控制器和主控板,將模組信息傳遞出去。
高壓設計,主要是電芯與電芯之間的串并聯,以及模組外部,設計模組與模組之間的連接導電方式,一般模組之間只是考慮串聯方式。這些高壓連接需要達到兩個方面的要求:一是電芯之間的導電件和接觸電阻分布要均勻,否則單體電壓檢測將受到干擾;其次,電阻要足夠小,避免電能在傳遞路徑上的浪費。
安全設計
安全設計,可以分為3個倒退的要求:良好的設計,確保不要發生事故;如果不行,發生事故了,最好能提前預警,給人以反映時間;故障已經發生,則設計的目標就變成阻止事故過快蔓延。
實現第一個目的的,是合理布局,良好的冷卻系統,可靠的結構設計;次級目標,則需要傳感器更加廣泛的分布到每一個可能的故障點,全面檢測電壓和溫度,最好監測每一顆電芯的內阻;最低目標,則可以通過電芯和模組設置保險絲,模組和模組之間設置防火墻,設計強度冗余應對災害發生后可能的結構坍塌。這都是高性能軟包模組的方向。
輕量化設計
輕量化設計,最主要目的是追求續航里程,消滅所有多余負擔,輕裝上陣。而如果輕量化再能跟降成本結合,則更是皆大歡喜。輕量化的道路很多,比如提高電芯能量密度;在細節設計中,確保強度的情況下追求結構件的輕薄(比如選更薄的材質,在板材上挖更大的孔);用鋁材替換鈑金件;使用密度更低的新材料打造殼體等。
標準化設計
標準化是大工業以來的長期追求,標準化是降低成本提高互換性的基石所在。具體到動力電池模組,還多了一個梯次利用的偉大目的。話雖如此,但現實是單體還沒有標準化,那么模組標準化距離就更遠了。
下一篇:超威新材料的新臺階