鉅大LARGE | 點擊量:3766次 | 2018年12月13日
電池組的容量衰減分析
電池組SOH估計
在不進行均衡的條件下,電池組的容量衰減將遠大于單體的容量衰減,鄭岳久等提出用兩維散點圖解釋電池組容量衰減的機理,指出電池組的容量衰減量為剩余充電電量最小單體的容量損失與單體間負極的活性鋰離子損失差異之和。為了得到電池組的容量,需要首先獲得單體的容量。單體容量獲取可以通過上述基于模型參數的辨識方法獲得,也可以通過充電電壓曲線變換方法獲取。
功能狀態(tài)(SOF)估計
估計電池SOF可以簡單認為是在估計電池的最大可用功率。一般而言,電池的最大可用功率受到電流、電壓、SOC、溫度等參數的限制,還與電池的老化程度、故障狀態(tài)等有關。常用的SOF估計方法可以分為基于電池MAP圖的方法和基于電池模型的動態(tài)方法兩大類。
1)基于MAP圖算法
基于電池測試(通常為HPPC測試)數據和最大、最小電壓限制,可以獲得在不同SOC下的最大充放電功率。在不同溫度、不同衰減程度下進行電池測試,可以建立最大充放電功率與溫度、SOC、SOH的關系,得到最大充放電功率MAP圖。基于MAP圖,實車BMS可以通過插值得到電池的最大充放電功率,實現(xiàn)SOF估計。
Do等分別研究了不同SOC、溫度、累計放電容量下的最大充放電功率,并建立了最大充放電功率的函數解析式,實現(xiàn)了對SOF的預測。基于MAP圖的估計方法簡單直接,但需要存儲多維MAP圖,并且只考慮了靜態(tài)特性,而對動態(tài)工況下的充放電功率估計有一定的局限性。
2)基于電池模型的動態(tài)算法
根據電池模型,綜合考慮電池的電流、電壓、SOC、功率等限制,可以得到最大充放電電流,從而計算得到電池的最大充放電功率。韓雪冰根據電池模型,給出不同電流輸入情況下電池的端電壓情況,通過迭代計算,獲得電池單體在電壓限制條件下所允許的最大電流Imax,voltage和最小電流Imin,voltage,并且從電池的機理出發(fā),考慮了電池副反應速率限制下的最大最小電流,其方法類似于求取端電壓限制下的最大充放電電流。最后綜合考慮上述限制,獲得電池單體的最大最小電流。Sun等分析比較了幾種最大可用功率預測方法,包括HPPC法、SOC限制法、電壓限制法,以及基于動態(tài)模型的多參數估計法,并通過HPPC測試得到充放電電阻,基于Rint模型,利用端電壓限制,估計電池的最大充放電功率。但這種方法估計的實際上是瞬時最大功率。并且由于Rint模型不夠精確,可能過于樂觀地估計了功率,還可能引起過充過放。與前述方法基本相同,Sun等認為若允許的SOC變化范圍很大,計算出的最大最小電流可能很大,并不合理,應與其他方法聯(lián)合使用。電壓限制法考慮在端電壓限制下一段時間內的最大充放電功率,但仍使用了Rint模型,原理上與前述方法類似,只是算法上并沒有采用迭代估計的方法,而是基于模型直接計算電流限值。基于動態(tài)模型的多參數估計方法實質上是基于Thevenin模型的電壓限制法,綜合SOC與電流的限制,進而得到最大充放電電流。
以上是獲得電池單體最大充放電電流的方法。實車上電池組由眾多電池單體組成,由于單體之間存在不一致性,若要單獨計算每個電池單體的最大可用功率,計算量太大,
韓雪冰提出了充、放電關鍵電池單體的概念,以減少計算量。綜合考慮各種限制條件,可以得到最終的最大最小電流Imax,total和Imin,total,將Imax,total、Imin,total代入電池模型中可計算得到對應的端電壓Umax,total,Umin,total,進一步可以得到最大充放電功率,即
剩余能量(RE)或能量狀態(tài)(SOE)估計
剩余能量(RE)或能量狀態(tài)(SOE)是電動汽車剩余里程估計的基礎,與百分數的SOE相比,RE在實際的車輛續(xù)駛里程估計中的應用更為直觀。在電動汽車使用過程中,電池的剩余能量(RE)是指以某一工況行駛時,從當前時刻直至電池放電截止過程中,電池累計提供的能量。RE可以由電池端電壓Ut與相應的累積放電容量Qcum組成的坐標系上的面積表示,如下圖所示。
電池剩余能量示意圖
當前時刻t的電池端電壓為Ut(t),放電截止時刻記為tlim,對應的端電壓為電池允許的最低放電電壓Ut(tlim)。當前時刻的荷電狀態(tài)為SOC(t),已累積的放電容量為Qcum(t)。放電截止時刻tlim對應的SOC和累積容量分別記為SOClim和Qcum(tlim)。圖中,端電壓變化表示為綠色曲線,曲線下圍成的(綠色斜線)面積對應電池當前時刻在此種工況下的剩余能量RE(t),其計算過程對應公式如下。
由于不同的充放電情況對應的端電壓響應不同,使得電池在同一時刻t提供的剩余能量RE(t)也不相同。此處用一組標準電流倍率下的放電情況作對照,標準情況的端電壓Ut,st如圖中藍色曲線(Qcum-Ut,st)所示。由電池SOC和標準放電容量的定義,此時放電截止位置的SOC值SOClim,st為0,累積放電容量Qcum,st等于電池標準容量Qst。標準放電工況下對應的剩余能量REst(t)與之前的RE(t)有明顯的差距。電池剩余放電能量的差異同樣可以由當前的RE(t)與理論上最大的剩余放電能量(電池開路電壓OCV曲線圍成的面積,圖中黑色虛線所示)進行比較。
不同放電工況下電池的能量損失不同,因此只有預測某一特定功率需求下的電池電壓響應過程,才能獲得準確的RE預測值。由于鋰離子電池的特點,其電壓輸出受到很多變量的影響,如當前SOC、溫度、衰減程度SOH,因此在能量預測過程中除傳統(tǒng)的SOC估計模型外,還需要一個專門的電壓預測模型。劉光明等提出一種適用于動態(tài)工況的電池剩余放電能量精確預測方法EPM(energypredictionmethod),如下圖所示,該方法基于當前的電池狀態(tài)和未來的電流輸入,根據電池模型對未來放電過程的電壓變化進行預測,并計算放電過程中的累積能量。預測過程中,根據當前的電壓、電流測量值對模型參數進行修正,對端電壓序列與RE的預測結果進行更新。
電池剩余放電能量預測方法(EPM)結構
故障診斷及安全狀態(tài)(SOS)估計
故障診斷是保證電池安全的必要技術之一。安全狀態(tài)估計屬于電池故障診斷的重要項目之一,BMS可以根據電池的安全狀態(tài)給出電池的故障等級。目前導致電池嚴重事故的是電池的熱失控,以熱失控為核心的安全狀態(tài)估計是最迫切的需求。導致熱失控的主要誘因有過熱、過充電、自引發(fā)內短路等。研究過熱、內短路的熱失控機理可以獲得電池的熱失控邊界。Feng等研究了一款三元電池的熱失控行為,獲得了3個特征溫度。Ouyang等研究了一款復合三元材料電池的過充電熱失控行為,獲得了4個過充電特征階段。這些研究為電池的安全狀態(tài)估計提供了基礎。
故障診斷技術目前已發(fā)展成為一門新型交叉學科。故障診斷技術基于對象工作原理,綜合計算機網絡、數據庫、控制理論、人工智能等技術,在許多領域中的應用已經較為成熟。鋰離子電池的故障診斷技術尚屬于發(fā)展階段,研究主要依賴于參數估計、狀態(tài)估計及基于經驗等方法(與上述SOH研究類似)。Bohlen等通過電池內阻模型的在線辨識實現(xiàn)了電池在線診斷。Sun等鉛酸電池的健康狀態(tài)(SOH)上,假設正常狀態(tài)的恒流充放電電壓曲線是光滑的,通過觀察其充放電曲線的變化辨識電池組可能存在的故障。電動汽車動力往往由成百上千個電池單體串并聯(lián)構成,個體之間存在一定的差異,即不一致性。一般地,不一致性服從統(tǒng)計分布規(guī)律,這為電池組的故障診斷提供了一種理論依據。
Zheng等建立了一種考慮接觸電阻的電池分頻模型,以代表低頻的電池平均模型研究電池組總體行為,以代表高頻的差異模型研究電池組一致性問題,成功辨識了電池組內的接觸電阻故障。Ouyang等同樣采用分頻模型,通過內短路電池造成一致性變差特性來診斷內短路的發(fā)生。
上一篇:電池當前的性能分析